首页> 外文OA文献 >Properties of Elastic Waves in a non-Newtonian (Maxwell) Fluid-Saturated Porous Medium
【2h】

Properties of Elastic Waves in a non-Newtonian (Maxwell) Fluid-Saturated Porous Medium

机译:非牛顿(maxwell)流体饱和度中弹性波的性质   多孔介质

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present study investigates novelties brought about into the classicBiot's theory of propagation of elastic waves in a fluid-saturated porous solidby inclusion of non-Newtonian effects that are important, for example, forhydrocarbons. Based on our previous results (Tsiklauri and Beresnev: 2001,Phys. Rev. E, 63, 046304), we have investigated the propagation of rotationaland dilatational elastic waves, through calculating their phase velocities andattenuation coefficients as a function of frequency. We found that thereplacement of an ordinary Newtonian fluid by a Maxwell fluid in thefluid-saturated porous solid results in: (a) an overall increase of the phasevelocities of both the rotational and dilatational waves. With the increase offrequency these quantities tend to a fixed, higher, as compared to theNewtonian limiting case, level which is not changing with the decrease of theDeborah number $\alpha$. (b) the overall decrease of the attenuationcoefficients of both the rotational and dilatational waves. With the increaseof frequency these quantities tend to a progressively lower, as compared to theNewtonian limiting case, levels as $\alpha$ decreases. (c) Appearance ofoscillations in all physical quantities in the deeply non-Newtonian regime.
机译:本研究通过引入非牛顿效应(例如重要的碳氢化合物),研究了经典的毕奥特理论在流体饱和的多孔固体中传播弹性波所带来的新颖性。根据我们以前的结果(Tsiklauri和Beresnev:2001,Phys。Rev. E,63,046304),我们通过计算旋转弹性波和膨胀弹性波的相速度和衰减系数随频率的变化,研究了它们的传播。我们发现麦克斯韦流体在饱和流体的多孔固体中置换了普通的牛顿流体会导致:(a)旋转波和膨胀波的相速度整体增加。与牛顿极限情况相比,随着频率的增加,这些数量趋于固定,更高,该水平不会随着Deborah数$ \ alpha $的减少而改变。 (b)旋转波和膨胀波的衰减系数总体下降。与牛顿极限情况相比,随着频率的增加,这些数量趋向于逐渐降低,随着水平降低。 (c)在非牛顿深层政权中所有物理量的振荡出现。

著录项

  • 作者

    Tsiklauri, D.; Beresnev, I.;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号